Contents lists available at ScienceDirect

International Journal of Mass Spectrometry

journal homepage: www.elsevier.com/locate/ijms

Short communication

Loss of Ag₃ moiety from clusters Ag_n^+ (n = 4, 6, 8, 10, 12) upon collision induced dissociation

Rafał Frański*, Błażej Gierczyk, Tomasz Kozik

Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

ARTICLE INFO

Article history: Received 28 February 2011 Received in revised form 26 April 2011 Accepted 27 April 2011 Available online 17 June 2011

Keywords: Silver cluster Laser desorption/ionization Gas phase fragmentation

1. Introduction

Clusters are groups of a small number of atoms with sizes from ~1 to 2 nm, which may be regarded as a bridge between atoms and nanoparticles. Some of the properties of clusters may be size-dependent [1–5]. Size dependence of the cluster properties reflects the transition from the isolated atom to the bulk state. Among metal clusters, the silver ones have attracted considerable attention [6–10]. EPR spectroscopy of silver clusters formed within metal–organic frameworks has shown the presence of paramagnetic Ag₃ clusters, as reported very recently by Allendorf et al. [11].

Investigation of the metal clusters in the gas phase is important from the fundamental science point of view [12], for example, it provides valuable information on the stability of clusters of different sizes. There are many reports on the gas phase generation of charged silver clusters, Ag_n^+ and Ag_n^- ions, from silver salts by using laser desorption/ionization (LDI). In most of the reports the clusters were generated with the use of a matrix [13–16] (matrix assisted laser/desorption ionization, MALDI), but the clusters can be also obtained without a matrix [17]. Clusters being even-electron ions (containing an odd number of silver atoms) were more abundant (more stable) than those being odd-electron ions (containing an even number of silver atoms). There is also a number of reports devoted to the gas phase fragmentation of silver clusters [18–23]. It was found that their fragmentation pattern displays odd–even alteration, as well as size dependence. Small odd clusters (Ag_3^+ ,

ABSTRACT

The positively charged silver clusters $(Ag_n^* \text{ ions})$ were generated in the gas phase by using laser desorption ionization. On the basis of collision induced dissociation MS/MS spectra of the clusters obtained, it has been found that small even clusters (ions Ag_4^* , Ag_6^* , Ag_8^* , Ag_{10}^* , Ag_{12}^*) lose Ag_3 moiety (trimer evaporation). This unexpected result has not been observed in previous studies devoted to the gas phase fragmentation of silver clusters. Loss of an odd-electron fragment Ag_3 from odd-electron parent clusters Ag_4^* , Ag_6^* , Ag_8^* , Ag_{10}^* , Ag_{12}^* , results in the formation of even-electron daughter cluster that are relatively more stable than the parent ions.

© 2011 Elsevier B.V. All rights reserved.

 Ag_5^+ , Ag_7^+ and Ag_{11}^+) lose Ag_2 moiety (dimer evaporation). Ion Ag_9^+ and odd clusters with $n \ge 13$ lose one Ag atom and Ag_2 moiety (both monomer evaporation and dimer evaporation were observed). Decomposition of even clusters consists in the loss of one Ag atom, only monomer evaporation was observed. Our studies have confirmed the above briefly described results. On the other hand, we have found that small even clusters may also lose Ag_3 moiety (trimer evaporation). This finding is reported in this short communication. It is worth adding that neutral Ag_3 moiety in the gas phase has already been a subject of a few interesting works [24–28], besides some theoretical works concerned with neutral Ag_3 moiety are also worth mentioning [29,30].

2. Experimental

The LDI full scan mass spectra and collision induced dissociation (CID) MS/MS spectra were obtained on a Waters/Micromass (Manchester, UK) Q-tof Premier mass spectrometer (software MassLynx V4.1, Manchester, UK) fitted with a 200 Hz repetition rate Nd/YAG laser ($\lambda = 355$ nm, power density 10⁷ W/cm²). For MS/MS experiments, argon was used as a collision gas at the flow-rate 0.5 ml/min in the collision cell (T-wave, pressure 6.5×10^{-3} mbar) unless indicated otherwise. Collision energy given in the laboratory frame (CE – the most important parameter for MS/MS experiments) is indicated in each MS/MS spectrum presented further. The socalled *m/z* window for MS/MS experiments was three; therefore, the selected precursor ion beams contained some isotopes, one and two mass units higher than the mass of the ion selected for MS/MS.

In order to prepare the target spots, $1 \mu l$ of methanol solution containing silver salt was used (the concentration was of about

^{*} Corresponding author. Tel.: +48 61 829 12 96; fax: +48 61 865 80 08. *E-mail address:* franski@amu.edu.pl (R. Frański).

^{1387-3806/\$ –} see front matter s 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ijms.2011.04.010

Fig. 1. Collision induced dissociation (CID) MS/MS spectra of ions (from the top) Ag_6^+ , Ag_5^+ , Ag_8^+ , Ag_7^+ .

0.1 mol/dm³). After a few minutes at room temperature the spot was dry and LDI mass spectra could be recorded. Choi et al. have tried to generate silver clusters $(Ag_n^+ \text{ ions})$ without a matrix from silver benzoate, silver trifluoroacetate, silver nitrate and silver ptoluenesulfonate, the clusters have been successfully generated only from silver benzoate [17]. We used four organic salts, namely silver acetylacetonate, silver trifluoroacetate, silver salicylate and silver benzoate (see supplemental material for preparation procedure). The most abundant clusters $(Ag_n^+ ions)$ were obtained from silver acetylacetonate. Silver trifluoroacetate and silver salicylate gave clusters as well. From silver benzoate no clusters were obtained. Thus our results are in contrast to those obtained by Choi et al. [17] but it will not be discussed here. We also tested three inorganic salts (AgNO₃, Ag₂SO₄, AgClO₄) but Ag_n^+ ions were not detected. Presentation and discussion of all the LDI full scan mass spectra obtained seems not to be necessary, in supplemental material the LDI full scan mass spectrum of silver acetylacetonate is shown as an example.

3. Results and discussion

Among the even clusters, Ag_6^+ and Ag_8^+ were characterized by the highest abundances (have the highest signal to noise ratio). Thus the results for these two clusters seem to be the most reliable. Fig. 1 shows the collision induced dissociation (CID) MS/MS spectra of ions Ag_6^+ and Ag_8^+ , and for comparison the spectra of ions Ag_5^+ and Ag_7^+ .

The spectrum of ion Ag_6^+ shows fragment ions Ag_3^+ and Ag_5^+ and the spectrum of ion Ag_8^+ shows fragment ions Ag_5^+ and Ag_7^+ . It can be assumed that the fragment ions Ag_3^+ and Ag_5^+ are formed from the fragment ions Ag_5^+ and Ag_7^+ , respectively, as a result of

Fig. 2. CID MS/MS spectra of Ag_{14}^+ ion and CID MS/MS spectrum of Ag_{13}^+ ion (bottom).

Fig. 3. The plot of the normalized signal intensities taken from CID MS/MS spectra of ions Ag_6^+ (a) and Ag_8^+ (b) versus the collision energy.

dimer evaporation. However, comparison of the spectra of ions Ag_6^+ and Ag_8^+ with those of ions Ag_5^+ and Ag_7^+ , respectively, strongly suggest trimer evaporation from ions Ag_6^+ and Ag_8^+ . In the mass spectrum of ion Ag_5^+ the fragment ion Ag_3^+ was obtained, but its abundance was about half of that of ion Ag_5^+ . In the mass spectrum of ion Ag_6^+ the fragment ion Ag_3^+ was much more abundant than fragment ion Ag_5^+ . In the mass spectrum of ion Ag_7^+ the fragment ion Ag_8^+ the abundance was much lower than that ion Ag_7^+ . In the mass spectrum of ion Ag_7^+ . Therefore, it can be concluded that fragment ions Ag_3^+ and Ag_5^+ are formed as a result of Ag_3 moiety loss (trimer evaporation) from ions Ag_6^+ and Ag_8^+ , respectively.

The loss of Ag₃ moiety (trimer evaporation) was also observed for ions Ag₄⁺, Ag₁₀⁺ and Ag₁₂⁺. It may be concluded from the respective CID MS/MS spectra, although there are low signal to noise ratios, in an analogous way as above for ions Ag₆⁺ and Ag₈⁺. The spectra are shown in the supplemental material.

Fig. 2 shows the CID MS/MS spectra of Ag_{14}^+ ion obtained at collision energies 20, 30, 40 and 50 eV and the CID mass spectrum of Ag_{13}^+ ion and obtained at the collision energy 40 eV.

At collision energies 20, 30, 40 eV, fragmentation of Ag_{14}^+ ion involves monomer evaporation, the only fragment ion formed is Ag_{13}^+ . Trimer evaporation does not proceed. At collision energy 50 eV, the dissociation of formed fragment ion Ag_{13}^+ proceeds. Therefore the CID MS/MS spectrum of ion Ag_{14}^+ obtained at collision energy 50 eV is similar to the CID mass spectrum of ion Ag_{13}^+ obtained at collision energy 40 eV (Fig. 2).

In order to confirm the hypothesis that we deal with trimer evaporation for even clusters, the CID MS/MS spectra were taken for more collision energies. Fig. 3 shows the plot of the normal-

Fig. 4. CID MS/MS spectra of ion Ag_8^+ obtained at the collision energy 17.5 eV at different argon pressure.

ized signal intensities taken from CID MS/MS spectra of ions Ag_6^+ (Fig. 3a) and Ag_8^+ (Fig. 3b) versus the collision energy. The collision energy changed with a step of 2.5 eV.

As shown in Fig. 3a, the effective losses of Ag_3 and Ag (formation of ions Ag_3^+ and Ag_5^+ , respectively) from ion Ag_6^+ begin at collision energy 10 eV. The loss of Ag_3 is much more efficient than loss of Ag. For collision energies higher than 20 eV the signal of ion Ag_5^+ decreases as a result of its decomposition (Ag_2 loss).

For ion Ag_8^+ we deal with a different situation (Fig. 3b). The loss of Ag (formation of ion Ag_7^+) is more efficient than that of Ag_3 (formation of ion Ag_5^+); both processes begin at the collision energy of 17.5 eV. For collision energies higher than 30 eV, the formation of ion Ag_5^+ became more efficient as a result of Ag_2 loss from ion Ag_7^+ . At higher collision energies an efficient formation of ion Ag_3^+ proceeded (loss of Ag_2 from Ag_5^+), but for clarity this ion was not included in Fig. 3b.

If the even clusters (ions Ag_4^+ , Ag_6^+ , Ag_8^+ , Ag_{10}^+ and Ag_{12}^+) really lose Ag_3 moiety, the relative yield of these processes should be independent of the argon pressure in the collision cell. Therefore a number of CID MS/MS spectra at different collision energies and different argon pressure were obtained. Fig. 4 shows the three CID MS/MS spectra of ion Ag_8^+ obtained at the collision energy 17.5 eV at different argon pressure as representative example. The spectra are very similar, confirming the hypothesis that we deal with trimer evaporation from selected parent ion.

The Ag_n^+ ions with an even n number, are odd-electron ions (radical cations), the neutral Ag and Ag₃ are radicals. Therefore, the loss of Ag or Ag₃ from Ag_n⁺ ions with an even n number leads to the formation of even-electron ions. As mentioned in the introduction, clusters being even-electron ions are more stable than those being

odd-electron ions. Thus, the loss of Ag₃ described here, analogically as the loss of Ag, leads to the formation of more stable ionic clusters.

As mentioned in the introduction, Ag₃ clusters have been recently found in silver clusters formed within metal–organic frameworks, thus in the condensed phase [11]. The loss of Ag₃ moiety under CID conditions occurs strictly in the gas phase. Taking into account this work and previous studies of neutral Ag₃ moiety in the gas phase [24–28], it is reasonable to assume that the existence of Ag₃ moieties is quite a common feature of silver clusters.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ijms.2011.04.010.

References

- N. Vilar-Vidal, M.C. Blanco, M.A. López-Quintela, J. Rivas, C. Serra, Electrochemical synthesis of very stable photoluminescent copper clusters, J. Phys. Chem. C 114 (2010) 15924–15930.
- [2] A.W. Castleman Jr., P. Jena, Cluster chemistry and dynamics special seature: clusters: a bridge between disciplines, PNAS 103 (2006) 10552–10553.
- [3] W.A. De Heer, The physics of simple metal clusters: experimental aspects and simple models, Rev. Mod. Phys. 65 (1993) 611–676.
- [4] M. Brack, The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches, Rev. Mod. Phys. 65 (1993) 677–732.
- [5] W.D. Knight, K. Clemenger, W.A. De Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett. 52 (1984) 2141–2143.
- [6] M.-S. Liao, P. Bonifassi, J. Leszczynski, P.C. Ray, M.-J. Huang, J.D. Watts, Structure, bonding, and linear optical properties of a series of silver and gold nanorod clusters: DFT/TDDFT studies, J. Phys. Chem. A 114 (2010) 12701–12708.
- [7] A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, L. Canioni, Silver clusters embedded in glass as a perennial high capacity optical recording medium, Adv. Mater. 22 (2010) 5282–5286.
- [8] T. Molotsky, T. Tamarin, A.B. Moshe, G. Markovich, A.B. Kotlyar, Synthesis of chiral silver clusters on a DNA template, J. Phys. Chem. C 114 (2010) 15951–15954.
- [9] J. Cveticanin, A. Krkljes, Z. Kacarevic-Popovic, M. Mitric, Z. Rakocevic, D. Trpkov, O. Neskovic, Functionalization of carbon nanotubes with silver clusters, Appl. Surf. Sci. 256 (2010) 7048–7055.
- [10] T.M. Bernhardt, Gas-phase kinetics and catalytic reactions of small silver and gold clusters, Int. J. Mass Spectrom. 243 (2005) 1–29.
- [11] R.J.T. Houk, B.W. Jacobs, F. El Gabaly, N.N. Chang, A.A. Talin, D.D. Graham, S.D. House, I.M. Robertson, M.D. Allendorf, Silver cluster formation, dynamics, and chemistry in metal–organic frameworks, Nano Lett. 9 (2009) 3413–3418.
- [12] R.A.J. O'Hair, G.N. Khairallah, Gas phase ion chemistry of transition metal clusters: production, reactivity, and catalysis, J. Clust. Sci. 15 (2004) 331–363.

- [13] H. Rashidzadeh, B. Guo, Generation of large gas-phase silver cluster ions by laser desorption/ionization of silver-containing salts, Chem. Phys. Lett. 310 (1999) 466-470.
- [14] S.-S. Choi, S.-H. Ha, Influence of silver salt types on formation of silver cluster ions in MALDI with DHB as matrix, Bull. Korean Chem. Soc. 28 (2007) 2508–2510.
- [15] S.A. Kéki, S.z.L. Szilágyi, J. Török, G. Deák, M. Zsuga, High aggregation number silver clusters by matrix-assisted laser desorption/ionization: role of matrixes on the gas-phase reduction of silver ions, J. Phys. Chem. B 107 (2003) 4818– 4825.
- [16] S.F. Macha, P.A. Limbach, S.D. Hanton, K.G. Owens, Silver cluster interferences in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of nonpolar polymers, J. Am. Soc. Mass Spectrom. 12 (2001) 732–743.
- [17] S.-S. Choi, S. -Ho Ha, H.M. Lee, J.-C. Kim, Direct formation of silver cluster ions from silver salts by laser desorption/ionization, Bull. Korean Chem. Soc. 28 (2007) 1437–1439.
- [18] M. Vogel, A. Herlert, L. Schweikhard, Photodissociation of small group-11 metal cluster ions: fragmentation pathways and photoabsorption cross sections, J. Am. Soc. Mass Spectrom. 14 (2003) 614–621.
- [19] K. Hansen, A. Herlert, L. Schweikhard, M. Vogel, Dissociation energies of silver clusters Ag_n⁺, n = 14, 15, 16, 18, Int. J. Mass Spectrom. 227 (2003) 87–96.
- [20] Y. Shi, V.A. Spasov, K.M. Ervin, Competitive fragmentation and electron loss kinetics of photoactivated silver cluster anions: dissociation energies of Ag_n⁻ (n = 7-11), J. Chem. Phys. 111 (1999) 938-949.
- [21] V.A. Spasov, T.H. Lee, J.P. Maberry, K.M. Ervin, Measurement of the dissociation energies of anionic silver clusters (Ag_n⁻, n=2-11) by collision-induced dissociation, J. Chem. Phys. 110 (1999) 5208–5217.
- [22] S. Krückeberg, G. Dietrichb, K. Lützenkirchen, L. Schweikhard, C. Walther, J. Ziegler, Multiple-collision induced dissociation of trapped silver clusters Ag_n⁺ (2 ≤ n ≤ 25), J. Chem. Phys. 110 (1999) 7216–7227.
- [23] S. Krückeberg, G. Dietrich, K. Lützenkirchen, L. Schweikhard, C. Walther, J. Ziegler, The dissociation channels of silver clusters Ag_n^+ , $3 \le n \le 20$, Int. J. Mass Spectrom. Ion Process. 155 (1996) 141–148.
- [24] S. Wolf, G. Sommerer, S. Rutz, E. Schreiber, T. Leisner, L. Wöste, R.S. Berry, Spectroscopy of size-selected neutral clusters: femtosecond evolution of neutral silver trimers, Phys. Rev. Lett. 74 (1995) 4177–4180.
- [25] A. Przystawik, P. Radcliffe, T. Diederich, T. Döppner, J. Tiggesbäumker, K.-H. Meiwes-Broer, Photoelectron studies of neutral Ag₃ in helium droplets, J. Chem. Phys. 126 (2007) 184306.
- [26] D.W. Boo, Y. Ozaki, L.H. Andersen, W.C. Lineberger, Femtosecond dynamics of linear Ag₃, J. Phys. Chem. A 101 (1997) 6688–6696.
- [27] H. Nagao, K. Awazu, S. Hayakawa, K. Iwamoto, M. Toyoda, T. Ichihara, Dissociation channels of silver bromide cluster Ag₂Br, silver cluster Ag₃ and their ions studied by using alkali metal target, Eur. Phys. J. D 45 (2007) 279–287.
- [28] A. Fielicke, I. Rabin, G. Meijer, Far-infrared spectroscopy of small neutral silver clusters, J. Phys. Chem. A 110 (2006) 8060–8063.
- [29] I. Andrianov, V. Bonačić-Koutecký, M. Hartmann, J. Manz, J. Pittner, K. Sundermann, Ab initio three-dimensional quantum dynamics of Ag clusters in the NeNePo process, Chem. Phys. Lett. 318 (2000) 256–262.
- [30] Y. Wang, X.G. Gong, First-principles study of neutral and charged silver clusters, Eur. Phys. J. D 34 (2005) 19–22.